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Drag on fixed beds of fibres in slow flow

By I. D. HOWELLS

Department of Mathematics, University of Queensland, 4072 Australia

(Received 20 May 1996 and in revised form 9 September 1997)

As a sequel to earlier work on viscous flow through random beds of fixed spheres, the
flow through beds of fixed cylindrical fibres is studied by the same method. Several
distributions of orientation are considered. The aim is to find the shielding radius and
drag per unit length as a function of volume fraction occupied by the fibres, in the semi-
dilute situation. The first approximation is obtained from the drag on a very long
cylinder resulting from the uniform flow at infinity of a viscous fluid in the presence of
Darcy resistance. Estimates are made of the effects of finite length, and of curvature of
the fibres. Finally the effect of a neighbouring cylinder is considered, to obtain the
second-stage approximation for straight fibres. Comparison is made with some
experimental and numerical results for unidirectional fibres and for plane pads.

1. Introduction

The theoretical treatment of slow flow through fixed beds has been pursued actively
since Brinkman (1947) proposed his effective medium and developed the application to
the case of spherical objects. Subsequently Spielman & Goren (1968) used the same
effective medium to study the drag due to flow through beds of fixed cylinders, with a
variety of distributions of orientation. Over the next four years important developments
were made in related fields. Batchelor (1971) distinguished dilute and non-dilute (or
semi-dilute) suspensions of elongated particles, and introduced a cell model to estimate
the stress generated in the latter case by a pure straining motion. Batchelor (1972)
showed how to make a re-normalization in order to obtain convergent integrals for the
second approximation to the sedimentation velocity of spheres in a dilute dispersion.

Childress (1972) worked out higher approximations to the drag on fixed spheres. For
this he made use of two methods, first a process involving interaction diagrams and
second, for point forces, an averaged-equation approach with re-normalization.
Following on this work, Howells (1974) employed the idea of averaged equations, after
extending the flow fields to satisfy the slow flow equations in the interior of the fixed
objects. Using Childress’s re-normalization technique for the equations, he set up a
successive approximation process which is generally applicable to flow in beds of fixed
objects, and applied it as far as the third approximation to spheres and to parallel
cylinders.

Hinch (1977) discussed very generally the method of averaged equations, and the
two kinds of re-normalization. In the application to the fixed bed problem he included
dipole contributions on the equations’ left-hand side, in such a way as to bypass the
need to keep all details of the solution for flow in the effective medium. His solution
for the bed of fixed spheres leaves some small unresolved numerical differences with
earlier results. Other transport properties of beds and suspensions were studied by
Willis & Acton (1976), O’Brien (1979) and Acrivos, Hinch & Jeffrey (1980).

Kaneda (1986) examined the effects of small but finite Reynolds number for flow
through a fixed bed of spheres. Having shown that the Oseen drag correction is
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dominant when the volume fraction of spheres is of smaller order than the square of
the Reynolds number, he calculated the mean drag for the cross-over situation where
they are comparable.

In the past ten years there has been a series of papers, including Shaqfeh & Koch
(1988), Shaqfeh (1988), Fredrickson & Shaqfeh (1989), Shaqfeh & Fredrickson (1990),
Schiek & Shaqfeh (1995), dealing with suspensions and with fixed beds of fibres. These
have studied heat flux, hydrodynamic stresses, chemical reactions, particle orientations.
The earlier papers used an averaged-equation method, but the 1989 and 1990 papers
developed a powerful general formalism using interaction diagrams, to obtain a
generalized process of successive approximation that applies to time-dependent as well
as steady-state problems. In addition, Frattini et al. (1991) and Evans, Shaqfeh &
Frattini (1994) have measured some of the predicted effects for comparison with the
theory. These papers do not appear to take up directly the question of drag in a fixed
bed. It seems that the results they obtained for other mean properties, though obtained
in a more general way, are basically analogous to those found for mean drag by the
method of averaged equations in Childress (1972) and Howells (1974).

Finally Ghaddar (1995) employed a parallel computational approach to obtain
numerical results for the permeability of unidirectional fibrous media. The accuracy
achieved by his method does not appear to be high. But within this limitation, and over
certain ranges of the volume fraction, he found good agreement with some of the
theoretical work, in particular Spielman & Goren (1968) and Howells (1974).

1.1. Effecti�e medium

In the effective-medium approach to flow through a fixed bed, the equation for slow
viscous flow is modified by an additional term representing a distributed resistance. At
its simplest, in the form proposed by Brinkman, this resistance is proportional to the
local velocity, according to Darcy’s law. The coefficient is obtained theoretically by
relating the total drag per unit volume in a uniform mean flow to the drag on an
individual element as predicted by the equation for flow in the effective medium.

A critical length is defined by the square root of the ratio of the viscosity to the Darcy
coefficient ; this separates small-scale viscous motions from large-scale pressure-driven
motions that follow Darcy’s law. Thus the velocity field due to a point force is
approximately a Stokes flow in the near field, and a dipole flow (inverse cube law) in
the far field.

It can be seen that the Darcy resistance creates a screening effect. The force is
transmitted partly as a pressure field, partly as a field of shear stress, and it is this latter
that is screened out over a distance of the order of the critical, or shielding (screening)
length.

1.2. A�eraged equations

In the averaged-equation method, Howells (1974), a series of equations is obtained for
successively greater numbers of test objects. For each equation the mean resistance
(mean over realizations of the array of objects) is related to an integral of the surface
stress on an object in the solution to the succeeding equation in the series. This
hierarchy of integro-differential equations is to be truncated, using Darcy’s law for the
resistance term in the highest-order equation that is to be retained.

1.3. Interaction diagrams

The hydrodynamic interactions between objects in a flow can be regarded as a multiple
scattering process, and thus represented by a collection of interaction diagrams.
Methods of topological reduction have been developed by Childress (1972), Bixon &
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Zwanzig (1981), Kirkpatrick (1982), Muthukumar (1982), Fredrickson & Shaqfeh
(1989), Shaqfeh & Fredrickson (1990), and others. These methods remove divergences
by effectively re-normalizing.

1.4. Orders of magnitude – parameter regimes

In monodisperse beds of fixed spheres, of radius a and number density n, the criterion
for a dilute array is that the volume fraction c¯ %

$
πa$n should be small. With creeping

flow, the successive approximation process for the drag on a sphere yields terms of
relative order 1, c"/#, c log c, c, c$/# log c,… , where two-body interactions give rise to the
O(c log c) term, and excluded volume effects to an O(c) term.

The extension to elongated objects introduces a much richer set of regimes. The
question of curved fibres is left until later ; for the moment we consider straight fibres
of radius a, half-length l, and number n per unit volume. As a result, a distinction must
be made between the dilute regime given by nl $' 1, and the semi-dilute regime with
nl $" 1 and small volume fraction c (¯ 2πla#n). In latter regime the lateral spacing of
fibres is small compared to their length.

The present paper is concerned only with the semi-dilute case. But now a further
refinement must be introduced, in that hydrodynamic interactions appear as a series of
negative powers of log 1}c whereas the effects of finite thickness, in particular the
excluded volume effect, are of order c. In the regime of asymptotically small c the latter
effects are exponentially small by comparison with the former.

1.5. Asymptotically small �olume fraction

Working in this regime, Howells (1974) gave the drag results from the successive
approximation process for infinitely long parallel cylinders. The divisors M

l
,M

t
(such

that the longitudinal and transverse drags per unit length are respectively 2πµU}M
l
,

4πµU}M
t
) are defined implicitly as functions of the volume fraction:

2M
l
®logM

l
2γ®1.172M−"

l
O(M−#

l
)¯ log 2}c,

2M
t
®logM

t
2γ®0.940M−"

t
O(M−#

t
)¯ log 1}c.
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7

8

(1.1)

Here γ is Euler’s constant, and the terms succeeding it on the left-hand side arise from
interactions between fibres. A zero-order approximation in each case could be taken as
2M¯ log 1}c, but the attempt to make M the subject of the full equation leads to series
in negative powers of log 1}c together with repeated logarithms. Shaqfeh and his co-
authors express some of their results using the first few terms of such a series. It is
claimed in the present paper that the implicit formulation of (1.1) is the appropriate
one. It retains more nearly the accuracy of which the particular approximation is
capable, and it makes clear the order of magnitude of the error made by stopping at
a particular point.

In this regime of asymptotically small volume fraction, the interaction diagram
method employed by Shaqfeh and his co-authors simplifies, since the fibre thickness is
small enough for the fibre probability distributions to be regarded as independent.
Their results are derived for such vanishingly small thickness. At the same time the
parameter nl $ is allowed to vary from very large in the asymptotic semi-dilute regime,
through large but finite, and through order 1 in the cross-over range, to very small in
the asymptotic dilute regime. They consider these regimes in some detail and give
results for them all in the problems that are treated.

Section 4 of the present paper considers the effect of small curvature as well as finite
length of the fibres. First-approximation calculations are given for the hydrodynamic
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effect of fibre ends on the drag in a fixed bed when nl $ is large but finite, and then for
the correction due to a small curvature of very long fibres.

1.6. Practical �alues of �olume fraction

In the present paper, we relax the asymptotic condition on the volume fraction by
letting it take more practical values, say between 0.02 and 0.2. Then c need not be
smaller than every negative power of log 1}c that occurs in the formulae, and a number
of effects become significant.

(i) The finite thickness affects the drag formulae at the first approximation. This is
seen in the general self-consistency equations for the shielding length, involving
modified Bessel functions, as given in Spielman & Goren (1968), Howells (1974), and
summarized in §3 of the present paper. The equations corresponding to (1.1) for the
first approximation to M

l
, M

t
(hence omitting the terms after the γ on the left-hand

side) are modified by the inclusion of terms of order c.
(ii) When the fibres are of finite length, the Archimedes force makes a contribution

to both the transverse and the longitudinal drag coefficients. This force is given by the
product of the volume of a fibre and the mean Darcy pressure gradient, and its
longitudinal component results from the pressure forces on the fibre ends. The
fractional contribution to the drag coefficient is actually equal to c, whatever the fibre
length. It is included in the formulae given in §3.

(iii) At the second approximation the excluded-volume effect brings in further terms
of order c. In the calculation of this effect it is necessary to take up the question of
conditional probability distributions: this is done in §2 of the present paper.

(iv) The hydrodynamic interactions introduce not just negative powers of log 1}c
but also positive powers of c.

1.7. Fibre ends

For clarity we should summarize the conclusions of this paper about the two sources
of fibre end effects.

(i) The hydrodynamic effect, resulting from the flow around an end, is significant
even for the regime of asymptotically small volume fraction. To the first approximation
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for fibre length large but finite, it is proportional to the ratio of shielding length to fibre
length (see §4).

(ii) The Archimedes (buoyancy) force, equal to the product of the volume of a fibre
and the uniform Darcy pressure gradient, will contribute to the longitudinal as well as
the transverse drag, since the fibres have finite length and so in general a pressure
difference between the ends. In the earlier treatments it was omitted from the
longitudinal drag, on the basis of the model of infinite cylinders. This contribution to
the drag is of relative order c, and will be insignificant in the regime of asymptotically
small volume fraction.

1.8. Second approximation

The second stage of the approximation process is worked out in §5. It necessarily
introduces the interaction between two inclined cylinders, the calculations for which
are set out in the Appendices. Results, discussion and comparison with experimental
and numerical data are given in §§6–8.

2. Distribution of strands

Given a direction specified by the unit vector l, and normal to l a small area dA at
r, the probability that this area is traversed by the axis of a strand having its positive
direction within a cone of solid angle dΩ(l) about l can be written

P(r, l) dAdΩ(l). (2.1)
In an isotropic situation

P(r, l)¯λ}(4π), (2.2)

where λ is the mean length of fibre per unit volume, and hence the volume fraction c
is πλa#, if the fibres have circular cross-section of radius a.

The conditional probability of another strand at r« in direction l«, given one at r in
direction l, is written in the corresponding way in terms of the density P(r«, l« r r, l).

2.1. Probability integrals: approximation of infinite straight strands

Following the iteration scheme set out by Howells (1974), the present paper considers
first an isolated test strand in Brinkman’s medium, and then the effect of a second test
strand. So that the second stage calculations may be manageable, we make the
approximation of infinite straight test strands. The effect is then averaged over all
positions of the second strand.

With no loss of generality, choose the origin of position vectors so that r¯ 0, and
specify the position vector r« of the second strand uniquely by the requirement that it
be perpendicular to l« : then it is written σ«¯m«y«n«z«. The differential element of
probability becomes

P(σ«, l« r 0, l) dA(σ«) dΩ(l«).

The element of area dA(σ«) (invariant under reversal of the sign convention for σ«)
is written in general as either dy«dz« or σ«dσ«dφ«. But in the calculation of the mean
value of the interaction between the two rods, it can also be expressed as follows in
terms of the geometry of the two rods. Orthogonal triads of unit vectors l, m, n and
l«, m«, n« are as shown in figure 1, where n¯®n« is normal to both axes. The position
on the l-axis of the foot of the common normal is denoted by x, and the length of the
common normal by h. Spherical polars θ, φ are used for l«, with l as the pole. Then

σ«¯m«x sin θnh,

dA(σ«)¯ sin θdhdx,

dΩ(l«)¯ sin θdθdφ.
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(2.3)
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If h is restricted to be positive, the range of θ is from ®π to π. Thus if a quantity f
depends on the position of the second strand, its expected value is

© fª¯&
π

−π

sin# θdθ&#
π

!

dφ&
¢

!

dh&
¢

−¢

fP(σ«, l« r 0, l) dx. (2.4)

2.2. Conditional probability density

The simplest consistent form of the conditional probability density is found in a
constructive way as follows (see Clague & Phillips 1996, §IIC). Let a random isotropic
distribution of infinite cylinders be given, with overlaps being permitted. Then at each
overlap, let the axes of the two strands involved be deformed in such a way that the
overlap is removed, leaving just one point of contact between the strands. An
appropriate spline shape for the deformation can be assigned: for a given volume
fraction it should take up a prescribed length, and have a correspondingly determined
maximum curvature for the situation of greatest possible overlap. The deformations
will of course introduce new overlaps: these are to be removed in the same way, and
so on. It can be seen that for a sufficiently large permitted maximum curvature,
depending on the volume fraction of thread, the process can be a convergent one,
leading to a limiting distribution without overlaps.

It is now necessary to determine the resulting form for P(σ«, l« r 0, l), so as to estimate
the interaction between strands. In the approximation needed for this estimate, the
above procedure is modified for the two infinite test cylinders that are notionally
inserted into a Brinkman’s medium. If they intersect, it will be adequate for the
interaction estimate to suppose that they are not deformed but simply translated by
equal amounts in opposite directions until they just touch. Then, assuming isotropy,
the conditional probability density depends on the length of the common normal h as
follows:

P(σ«, l « r 0, l )¯λ}(4π) ²u(h®2a)2aδ(h®2a)´,

where u(h®2a) is the unit step function, and the delta-function corresponds to the
accumulated probability of initially intersecting strands that have been displaced.

When this is inserted into (2.4), the expected value is

© fª¯
λ

4π&
π

−π

sin# θdθ&
¢

!

²u(h®2a)2aδ(h®2a)´dh&#
π

!

dφ&
¢

−¢

fdx. (2.5)

In the actual calculation f denotes a contribution to the force per unit length on the first
cylinder. The value of f at a point depends on the distance x of that point from the foot
of the common normal; hence the x-integral in (2.5) is equal to the corresponding
contribution to the total force on the first cylinder.

3. First approximation: drag on one very long test cylinder

At the first approximation, the drag per unit length of fibre is calculated for the
limiting case of a very long circular cylinder. Being finite, as explained in §1, the
cylinder experiences the longitudinal as well as the transverse component of buoyancy
force, given by the product of its volume and the mean pressure gradient. This requires
a modification to the longitudinal drag coefficient given in earlier work, which was
based on the model of an infinite cylinder.

In the flow equation for Brinkman’s effective medium (omitting average signs) we
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denote the Darcy coefficient k by µα# for the sake of simplicity in the expressions for
the Green’s function. Then α−" is the shielding radius:

®¡pµ~ #u¯µα#u,

¡[u¯ 0.

5

6

7

8

(3.1)

From Howells (1974, equation (4.7)), solutions are conveniently expressed in terms of
the elementary solution, the ‘shielded Stokeslet ’ of strength S :

u(r)¯S[)(r),

where )(r)¯ (¡¡®I~ #) 2α−#r−"(1®e−αr) (3.2)

is the (three-dimensional) Green’s function.
For the purpose of the Section on curved threads, it is convenient to make use as well

of the elementary rotational solution (‘rotlet ’) of strength M :

u(r)¯¡¬²M[)(r)´¯®M¬¡(2r−" e−αr). (3.3)

The flow due to a force field Q(r) acting on the fluid is given by the volume integral :

u(r)¯ (8πµ)−"&Q(r«)[)(r®r«) dr«. (3.4)

Then the Green’s function for a cylindrical flow (independent of the axial coordinate
x), is obtained by integrating (3.2) along the axis, with the result

)
l
(r)¯ (¡¡®I~ #) 2α−#²®logασ®K

!
(ασ)´. (3.5)

Howells (1974) also sets out the Faxe!n’s formulae for longitudinal and transverse
drag per unit length on an infinite cylinder in an externally produced velocity field u

e
(σ)

(independent of x). The formulae can be combined into one expression for a cylinder
having radius a, and its axis in direction l :

f(l )¯ 4πµ²C
!
(l )C

#
(l ) a#~ #´[u

e
(0), (3.6)

in terms of the tensor coefficients

C
!
(l )¯C

L
llC

T
(I®ll ), α#a#C

#
(l )¯C

S
(I®"

#
ll )®C

!
(l ),

where
C
S
¯ 1}K

!
(αa), C

L
¯ "

#
αaK

"
(αa)}K

!
(αa),

C
T

¯ "

#
α#a#K

#
(αa)}K

!
(αa)¯αaK

"
(αa)}K

!
(αa)"

#
α#a#.

In the present paper the formula for longitudinal drag needs modification for the
case of uniform flow at infinity, so as to include the force due to the pressure difference
between the ends of a long but finite rod, as already explained. When this is done, the
drag per unit length on a long cylinder with uniform velocity U at infinity becomes

f *(l )¯ 4πµ²C
!
(l )"

%
α#a# ll ´[U

¯ 4πµC$

!
(l )[U

¯ 4πµC
T
(I®"

#
ll )[U. (3.7)

Let λ be the mean length of filament, measured along the axis, per unit volume, and
so c¯πλa# is the volume fraction of filaments. Since the medium is supposed to be
isotropic the angular distribution of l must also be isotropic, and the mean value of ll
over all directions is "

$
I. Then the self-consistency equation for α is

µα#U¯
λ

4π& f *(l ) dΩ(l )¯µλC
T& (I®"

#
ll )[UdΩ(l )¯ "!

$
πµλC

T
U,
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which reduces to
K

!
(αa)}K

#
(αa)¯ &

$
c. (3.8)

Compare the equations for random arrays of parallel rods:

Longitudinal flow† αaK
!
(αa)}K

"
(αa)¯ 2c,

Longitudinal flow* K
!
(αa)}K

#
(αa)¯ c,

Transverse flow K
!
(αa)}K

#
(αa)¯ 2c,

5

6

7

8

(3.9)

where † denotes the absence of pressure forces on the ends, and * their inclusion.
Note that it is only at the first stage, for one test cylinder, that the modification for

end pressure forces must be made. After that, any pressure difference between the ends,
associated with higher-order disturbance flow fields, tends to zero as the fibre length
tends to infinity.

These differences in the self-consistency equation for longitudinal flow, between
infinite cylinders and very long finite cylinders, seem paradoxical. Of course the
ambiguity in the drag formula can be explained physically, but it does not seem that
the shielding radius should be affected by the presence or absence of ends, when the
threads are very long. Presumably the paradox is inherent in the successive
approximation process, which is capable of giving a unique result from different
starting points.

3.1. Fibre pads

The above results for longitudinal flow through parallel arrays (without pressure forces
on the ends), and flow through arrays randomly orientated in three dimensions, agree
with Spielman & Goren (1968). But these authors also consider a pad of fibres
randomly orientated in the plane of the pad. The Darcy law is now anisotropic : flow
normal to the pad is normal to all the fibre axes, whereas flow in the plane of the pad
meets fibres in all oblique directions. The exact first-order theory is complicated
mathematically. The authors neglect the anisotropy in their solution for flow round a
fibre, and their equation for the Darcy resistance coefficient for flow normal to the pad
is the same as for the case of parallel fibres. On the other hand, the equation for flow
in the plane of the pad involves averaging over all directions of the fibres, and takes
the form

α#a#¯ 2c(C
T
C

L
)¯ c²3αaK

"
(αa)}K

!
(αa)α#a#´,

i.e. (2c)K
!
(αa)}K

#
(αa)¯ 3c.

It can be seen that on the initial approximation, and for very small volume fraction,
the ratio of resistance normal to and parallel to the plane of the pad is 4:3.

Although it is not convenient to carry out an exact solution for flow past a cylinder
in an anisotropic Brinkman medium, it is fairly simple to find a first correction to the
initial approximation. Given the (two-dimensional) flow field for an isotropic medium,
the unbalanced resistance field due to the anisotropy can be written as the right-hand
side of Brinkman’s equation. Then the first correction field and drag on the cylinder are
determined using the isotropic Green’s function. If α#a# is taken as the average of
α#

"
a# and α#

#
a#, corresponding to drag normal to and parallel to the plane of the pad, and

C
L
,C

T
are as defined in terms of αa after equation (3.6), the self-consistency equations

are given to this approximation by

α#a#(1"

%
c)¯ (

#
cC

T
, i.e. (1"

%
c)K

!
(αa)}K

#
(αa)¯ (

%
c,

and α#

"
a#}α#a#¯ 1(12c)}²7(1c)®(4®6c)C

L
´.
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4. Effects of finite length and of curvature

4.1. Finite length, in the semi-dilute regime

Consider first the hydrodynamic effect of the ends of straight fibres. If there are n fibres
per unit volume, the mean length is l

m
¯λ}n. It can be seen that the maximum possible

value of l
m

is double the expected distance a rod of radius a can be extended from a
given point, before meeting another rod. For random distributions it is found that

(l
m
)
max

¯ 2}(πaλ)¯ 2a}c. (4.1)

Consideration is restricted to the case where l
m

is large compared to the shielding
radius. In combination with (4.1), this restriction can be stated as

αa( a}l
m

" "

#
c. (4.2)

In this situation each fibre end can be regarded as adding approximately the same
amount to the total effective length per unit volume, to be calculated as for a semi-
infinite rod. Since the disturbance flow due to an infinite rod corresponds to a line
distribution of singularities (shielded Stokeslets) along the axis, the flow past a semi-
infinite rod can be found (for small αa) by successive approximations, starting with the
flow that results by the omission of the singularities along one half of the axis (x! 0).
The first-order remainder flow at x" 0 is

U[llC
L9α−#x−#²1®(1αx) e−αx´&

¢

x

e−αx« x«−"dx«:
U[(I®ll )"

#
C
T9®α−#x−#²1®(1αx) e−αx´&

¢

x

e−αx« x«−"dx«: .
The first correction to the drag per unit length at x is obtained by treating the
remainder flow at any x as a uniform flow, and applying the factor C

!
(l ). Then

f
"
(x)¯ 4πµU[llC#

L9α−#x−#²1®(1αx) e−αx´&
¢

x

e−αx« x«−"dx«:
2πµU[(I®ll )C#

T 9®α−#x−#²1®(1αx) e−αx´&
¢

x

e−αx« x«−"dx«: .
When these are integrated, the total additional force near the end of the rod is
obtained:

F
e
¯ 8πµα−"U[[²C#

L
O(αa)´ llO(αa) (I®ll )]. (4.3)

The added effective length per fibre end is thus to leading approximation:

4α−"C#
L
}C

T
for longitudinal flow,

0 for transverse flow.

The self-consistency equation is, to the same approximation,

α#a#¯ "!

$
cC

T
"'

$
πa#nα−"C#

L

¯ "!

$
cC

T
²1)

&
(αl

m
)−"C#

L
}C

T
´. (4.4)

4.2. Cur�ed thread: complete circle

Given a length of fibre in the form of a ring of radius R(α−", in a flow U at infinity,
the effect of curvature on the drag at any point is to be calculated to the first
approximation. Take the origin O on the fibre axis, and measure angle θ around the



172 I. D. Howells

ring from O. The orthonormal reference triad at O is i (tangential), j (radially inwards),
k, and the corresponding triad at angle θ is l,m,k. The leading approximation to the
drag at θ is f¯®4πµC

T
(I®"

#
ll )[U.

Represent the disturbance flow due to the circle in terms of a combined distribution
of shielded Stokeslets and ‘rotlets ’ (equation (3.3)) around the circular axis of the fibre.
Let σ be the position vector of a point P in the plane θ¯ 0, and let r« be the position
vector of a point Q at angle θ on the fibre axis. The disturbance velocity field is

u(r)¯ (¡¡®I~ #)[Φ(r)¡¬X(r), (4.5)

where α#Φ(r)¯®&
π

−π

U[²A®B exp(®α rr®r« r)´
Rdθ

rr®r« r
,

X(r)¯&
π

−π

U[B
r
exp(®α rr®r« r)

Rdθ

rr®r« r
,

with A(θ)¯ (A
"
llA

#
mmA

$
kk), B(θ)¯ (B

"
llB

#
mmB

$
kk),

B
r
(θ)¯ (B

r"
lkB

r$
kl ).

Here the second integral arises from the ‘rotlet ’ distribution: a main velocity in the
plane of the ring produces rotational effects in that plane (except at points where the
velocity is normal to the thread), and perpendicular to the plane of the ring it produces
rotational effects about the circular axis of the fibre.

These tensors are to be expressed in terms of i, j, k and the angle θ. Since terms that
are odd functions of θ do not contribute to the integral, the tensor A is replaced by
(A

"
iiA

#
jjA

$
kk)(ii®jj) (A

#
®A

"
) sin# θ, and similarly for B.

Expressions for Φ(r),X(r) are first found on the axial plane θ¯ 0, as functions of
σ¯ yjzk, and then extended to general points using the axisymmetry of the ring. They
are calculated as expansions in powers of y}R, z}R, using the relation

rσ®r« r¯ (r«#σ#)"/# ²1®(y}R) r«#}(r«#σ#)´"/#.

The relevant differential operators in (4.5) are applied to Φ(r),X(r) to obtain the
resulting disturbance velocity field U

d
, and hence the remainder velocity field UU

d

at the surface of the fibre.
When the first approximations are used for A, B, namely C

T
(I®"

#
ll ), C

S
(I®"

#
ll )

respectively, and the term in R−" is eliminated by the ‘rotlet ’ distribution

B
r
¯ (a}R) ²αaK

"
(αa)´−" ("

%
lk$

%
kl ),

the remainder flow on the fibre surface is obtained to leading order of approximation,
at a general point on the circle :

UU
d
¯ "

)
(αR)−#U[[(®2C

L
4α#a#®9α#y#®3α#a#}C

L
) ll

²®(6 log 8R}a®7)C
T
6®3α#a#6α#y#6α#a#}C

L
´mm

²(2 log 8R}a®5)C
T
®2α#a#}C

L
´kk].

This is to be eliminated by combinations of the standard solutions for a cylinder.
Finally a stress calculation leads to the expression for the total drag, to the same
approximation:

f¯ 4πµC
T
(I®"

#
ll )[U"

%
πµ(αR)−#U[[(®C#

T
6α#a#"

%
α%a%$

#
α%a%}C

L
) ll

4C
T
(C

T
log 8R}a®1) (®3mmkk)(11C#

T
®α#a#C

T
"

)
α%a%) (mm®kk)

(C#
T
4α#a#"

#
α%a%α%a%}C

L
) (3mmk)]. (4.6)
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4.3. Circular arc between straight sections

Consider next a circular arc of the same radius, together with the semi-infinite straight
pieces tangent to the arc at its ends, provided the arclength is large compared with the
shielding radius. The difference between the additional drag in this case and the case
of the circle is more readily found, since the effect of the portions of fibre beyond the
ends of the arc can be treated as a pressure-driven flow, and terms in exp(®αr)
neglected. It is found that the expression

"

%
πµ(αR)−#U[[28C

L
C
T

ll®27C#
T

mm3C#
T

kk®4C#
T
(log 4R}l

ch
) (®3mmkk)],

where l
ch

is the chord length of half of the circular arc, is to be added to (4.6), with the
result

f¯ 4πµC
T
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#
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%
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log 2l
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}a®1) (®3mmkk)(2C#

T
®α#a#C

T
"

)
α%a%) (mm®kk)

(®5C#
T
4α#a#"

#
α%a%α%a%}C

L
) (3mmkk)].

The mean drag as the plane of the circle is rotated about l, when R−# denotes the
mean-square curvature, is given to the same approximation by

4πµC
T

U[[²"
#
(αR)−# f

c"
(αa)´ ll²1(αR)−# f

c#
(αa, l

ch
}a)´ (I®ll )], (4.7)

where

f
c"
(αa)¯ "

"'
²13C

T
®7α#a#(α#a#}C

T
) (6"

%
α#a#$

#
α#a#}C

L
)´,

f
c#
(αa, l
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}a)¯ "

"'
²®4C

T
log 2l

ch
}a®10C

T
4(α#a#}C

T
) (8α#a#2α#a#}C

L
)´.

4.4. Random fibre configuration

In the case where the tangent vector l is a stationary random function of the arclength
s, an additional effect is an increase in the conditional probability of fibres within a
radius L of a given point P through which the thread passes (omitting the region of
high probability close to the straight line through P in direction l(0)). The correlation
coefficient can be defined as ©l(0)[l(s)ª, and L will be the integral length scale. The
mean length of fibre per unit volume at distance r from P can be expressed as λ∆λ,
where ∆λ¯L−#Λ(r). At large distances Λ(r)E 3L}(2πr) ; provided L is large compared
to the shielding radius this function can be treated as having constant value Λ(0)E
3}(2π) in the neighbourhood of P.

Use of the self-consistency equation (3.9) permits determination of the local change
in shielding radius, i.e. in the Darcy coefficient k¯µα#, as a result of this small local
increase in thread length per unit volume. The result is found to be

∆(α#)EL−# JC#
T
}(C

T
®2C#

L
), (4.8)

where J¯ "!

$
πΛ(0)E 5.

This local increase in the Darcy coefficient interacts with the main flow and also with
the disturbance flow due to that portion of the thread near P that can be regarded as
straight. The result is a remainder flow at P, giving the leading approximation to the
additional drag due to the conditional probability effect :

δf¯ 4πµ(αL)−#C
T

U[² f
r"
(αa) llf

r#
(a) (I®ll )´, (4.9)

where (see (4.8))
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and note that (C
S
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T
)¯ "

%
α#a#}K

!
(αa)O(α%a%).
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4.5. Summary of results for a single fibre

The results of §§3 and 4, equations (3.8), (4.3), (4.7), (4.9), can now be brought together
in the expression for mean drag per unit length

f¯ 4πµC
T

U[[I®"

#
ll(αl

m
)−" 4C#

L
}C

T
ll(αR)−#² f

c"
(αa) llf

c#
(αa, l

ch
}a) (I®ll )´

(αL)−#² f
r"
(αa) llf

r#
(αa) (I®ll )´], (4.10)

and the self-consistency equation, following the pattern of (3.9)

K
!
(αa)}K

#
(αa)¯ &

$
c[1(αl

m
)−" )

&
C#

L
}C

T
(αR)−# ²#

&
f
c"
(αa)%

&
f
c#
(αa, l

ch
}a)´

(αL)−# ²#
&
f
r"
(αa)%

&
f
r#
(αa)´]. (4.11)

Here the four terms in the square bracket correspond to: very long straight fibres, the
effect of finite mean length l

m
, the effect of mean-square curvature R−# with correlation

length l
ch

for the curvature, and the effect of local increase in fibre density with a
random configuration of fibre on length scale L. Numerical values of the functions
involved are shown in tables 1 and 2.

5. Second-stage drag calculation (two test cylinders)

5.1. Successi�e approximation scheme

The general scheme for spheres is set out in Howells (1974, §5). In the case of m ‘ test
spheres ’ in prescribed positions, the flow field is expressed as the sum of the main flow
and a collection of ‘difference flows’, one for each subset of the test spheres. This
scheme applies equally to obstacles of any shape provided that, in specifying the flow
variables, additional arguments are included to describe the orientation (and size and
shape if necessary) of the obstacles.

In this paper, if the calculation of interactions between nearby threads is to be
practicable, even as far as m¯ 2, it is necessary to use the approximation of test
obstacles in the form of infinite straight rods. Then the only additional argument
required for each rod is the unit vector giving its direction.

5.2. One test rod

The test rod is in the direction of the unit vector l, and the cylinder axis passes through
the origin. The coordinates are those given in §3, and as follows:

position vectors

r¯xlσ (σ[l¯ 0) for a general point,

r¯xla ( rar¯ a,a[l¯ 0) for a point on surface of rod;

element of length around circumference of a normal section
dL(a).

For the disturbance flow field set up by the cylinder, the important mean quantities
are

mean disturbance velocity field U
"
(r ; l),

mean disturbance resistance force acting on fluid R
"
(r ; l ),

mean discontinuity in stress across surface of rod at xla T
"
(x,a ; l ),

mean drag force per unit length of rod f$
"
(l )¯ ,T

"
(x,a ; l ) dL(a)πµα#a# ll[U,
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where the second term is the longitudinal buoyancy pressure force on a very long finite
rod, as discussed in §1. By homogeneity, all of these quantities except T

"
(x,a ; l ) are

independent of x. For T
"
there is a pressure component that depends linearly on x, but

does not contribute to the drag.
The complete mean flow past one test rod is (cf. Howells 1974, equation (5.12))

©uª¯UU
"
(r),

with mean resistance force on fluid

R¯®µα#UR
"
(r).

These satisfy an equation that can be written, in re-normalized form,

®¡©pªµ~ #©uª®µα#©uª¯®R®µα#©uª. (5.1)

The stress distribution T
"
(x,a ; l ) on the rod surface is such that the velocity vanishes

there.
The solution can be expressed in terms of the three-dimensional Green’s function

(3.2) as
©uª¯UU

T"
U

R"
,

where U
T"

(r ; l )¯®(8πµ)−"&,T
"
(x,a ; l )[)(r®xl®a) dL(a) dx, (5.2)

U
R"

(r ; l )¯ (8πµ)−"& ²R
"
(r« ; l )µα#U

"
(r« ; l )´[)(r®r«) dr«. (5.3)

Now apply the generalized Faxe!n’s formula (3.6), with externally produced flow u
e
¯

UU
R"

(independent of x). The term U
T"

represents the reflection in the cylinder of
this externally produced flow. The mean drag per unit length is given by

f$
"
(l )¯ 4πµ[C$

!
(l )[U²C

!
(l )C

#
(l ) a#~ #´[U

R"
(0)], (5.4)

where the tensor coefficients depend on l as shown in (3.6)–(3.7). C$

!
(l ) includes the

longitudinal pressure drag on finite rods. As pointed out at the end of §3, there is no
longitudinal pressure drag contribution in the second and higher approximations.

The mean resistance force in the absence of test rods is given in terms of T
"

by

R¯®& (,T
"
(x,a ; l )P(σ®a ; l ) dL(a)πµα#a# ll[U*dΩ(l ). (5.5)

With the simplest form for the probability this is a constant, and from (1.2),

®R¯µα#U¯λ}(4π)& f$
"
(l ) dΩ(l ). (5.6)

In the stage 1 approximation (denoted by a superscript 1), the hierarchy of equations
is truncated by taking R

"
µα#U

"
, and hence U

R"
, as zero everywhere. This is

equivalent to the statement that R(")

"
, U(")

"
are related in the same way as R and U in

uniform Darcy flow. The result is

U(")
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for σ% a

for σ" a

5

6

7

8

. (5±7)

the disturbance flow due to a cylinder in Brinkman’s medium (see §3).
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It follows from (5.4) that f(")
"

(l )¯ 4πµC$

!
(l )[U. Substitution into (5.6) leads to the

self-consistency equation (3.8).

5.3. Two test rods

The extension to two test rods (exact theory) proceeds in the same way as the extension
from one test sphere to two in Howells (1974, §5). At this stage the contribution from
end forces tends to zero in the limit of very long rods, hence we consider infinite
cylinders. If the direction and position of the second rod are specified by the unit vector
l « and the position vector σ« perpendicular to l « (figure 1), the mean flow at r is written

©uª¯UU
"
(r ; l )U

"
(r®σ« ; l «)U

#
(r ; 0, l ;σ«, l « ),

and similarly for R. The mean surface stress discontinuity at σ«x« l «a« on rod 2
(ra«r¯ a, a«[l «¯ 0) is

T
"
(x«,a« ; l « )T

#
(x«,a« ;σ«, l « ; 0, l ),

and there is a corresponding expression for the stress at xla on rod 1.

5.4. Preliminary result

The extra force per unit length at x on rod 1, due to the presence of rod 2, is

f
#
(x ; 0, l ;σ«, l « )¯ ,T

#
(x,a ; 0, l ;σ«, l « ) dL(a),

which is associated with the extra velocity field at the first axis due to the presence of
the second rod:

U
"
(r®σ« ; l « )U

#
(r ; 0, l ;σ«, l « ).

For a drag calculation, this velocity field must be separated into the part resulting from
forces external to the first rod, and that produced by the extra stress T

#
on the first rod.

The externally produced part is

u
e
¯U

"
(r®σ« ; l «)U

R#
(r ; 0, l ;σ«, l « )

®(8πµ)−"&,T
#
(x«,a« ;σ«, l« ; 0, l)[)(r®σ«®x«l«®a«) dL(a«) dx«.

Here U
R#

is defined by analogy with equation (5.3). In the truncation for stage 2 it is
taken to be zero.

The integral of f
#
over all x (i.e. the total additional force on rod 1 due to the presence

of rod 2) is finite. With the above choice of u
e
, it is shown in Appendix A, equations

(A 11) and (A 12), that this can be expressed as

&
¢

−¢

f
#
(x ; 0, l ;σ«, l « ) dx

¯ 4πµ&
¢

−¢

²C
!
(l )C

#
(l ) a#~ #´[²U

"
(xlσ®σ« ; l « )U

R#
(xlσ ; 0, l ;σ«, l « )´dx rσ=!

®"

#
²C

!
(l )C

#
(l ) a#~ #´[&

¢

−¢

dx&
¢

−¢

dx«

¬,T
#
(x«,a« ;σ«, l « ; 0, l )[)(σxl®σ«®x« l «®a«) dL(a« ) rσ=!. (5.8)
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5.5. Mean drag on one test rod at stage 2

To evaluate expression (5.4) for the mean drag on one test rod, the additional mean
resistance force at r due to the presence of this rod is to be expressed by means of
probability integrals of T

"
, T

#
taken over all positions of a second rod (compare

Howells 1974, equation (5.7)) :

R
"
(x« l «σ« ; l )¯®&,T

"
(x«,a« ; l « ) ²P(σ«®a«, l « r0, l )®λ}4π´dL(a« ) dΩ(l « )

®&,T
#
(x«,a« ;σ«®a«, l « ; 0, l )P(σ«®a«, l « r 0, l ) dL(a«) dΩ(l « ).

Substitution into (5.3), and a change of variable in the integrals, leads to

U
R"

(r ; l )¯&&U
T"

(r®σ« ; l « ) ²P(σ«, l « r 0, l )®λ}4π´dA(σ« ) dΩ(l « )

α#}(8π)&U
"
(r« ; l )[)(r®r« ) dr«

®(8πµ)−"&dΩ(l«)&P(σ«, l « r 0, l ) dA(σ«)

¬&
¢

−¢
,T

#
(x«,a« ;σ«, l « ; 0, l )[)(r®σ«®x« l «®a«) dL(a«) dx«. (5.9)

In these integrals the dA(σ« ) integration is taken over the whole plane normal to l «. For
the third term in (5.9), it is expressed as a repeated integral by means of the
transformation dA(σ« )¯ sin θdxdh, where x is the position on rod 1 of the foot of the
common normal, and h is its length (see (2.4)). Given statistical homogeneity, the
probability density can be taken outside the x-integration thus introduced.

The operator ²C
!
(l )C

#
(l ) a#~ #´ is now applied to U

R"
, so as to evaluate the

expression (5.4), and the result (5.8) is used to eliminate the integral involving T
#
. It is

found that
(4πµ)−" f

"
(l )¯C

!
(l )[UW

"
W

#
W

$
W

S
,

where

W
"
¯²C

!
(l )C

#
(l ) a#~ #´[&&U

T"
(r®σ« ; l « ) ²P(σ«, l « r 0, l )®λ}4π´dA(σ« ) dΩ(l « ) r

r=!
,

W
#
¯

α#

8π
²C

!
(l )C

#
(l ) a#~ #´[&U

"
(r« ; l )[)(r®r«) dr« r

r=!
,

W
$
¯& sin θdΩ(l « )&

¢

!

P(σ«, l « r 0, l ) dh

¬&
¢

−¢

²(4πµ)−" f
#
(x ; 0, l ;σ«, l « )®²C

!
(l )C

#
(l ) a#~ # ´[U

"
(xlσ®σ« ; l « ) rσ=!´dx,

W
S
¯®& sin θdΩ(l « )&

¢

!

P(σ«, l « r 0, l ) dh

¬&
¢

−¢

²C
!
(l )C

#
(l ) a#~ # ´[U

R#
(xlσ ; 0, l ;σ«, l « ) rσ=!dx.
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5.6. Stage 2 approximation

As has been pointed out, the truncation now involves omission of U
R#

and hence of
W

S
. In the integrals for W

"
, W

#
, W

$
the first approximations are used for the velocity

fields : U(")

"
(r ; l ), U(")

T"
(r ; l ), and these are equal (see (5.7)). The first two integrals can be

evaluated algebraically (refer to (2.5) for P(σ«, l « r 0, l )) :

W
"
¯²C

!
(l )C

#
(l ) a#~ # ´[&dΩ(l « )&U(")

"
(r®σ« ; l « ) ²P(σ«, l « r 0, l )®λ}4π´dA(σ«) r

r=!

¯ c [%
$
(αa)−# ²C#

T
®C#

S
(12αa) e−#αa´ (I"

%
ll )®&

'
C
T

ll ][U, (5.10)

W
#
¯

α#

8π
²C

!
(l )C

#
(l ) a#~ # ´[&)(r®r« )[U(")

"
(r« ; l ) dr« r

r=!

¯²®2C#
L
(I®"

#
ll )"

%
α#a# ll ´[U. (5.11)

In W
$
the first approximation to f

#
(x ; 0, l ;σ«, l « ) will be given in terms of Ψ, the Fourier

transform of the surface stress, obtained from the calculations described in the
Appendices. The integral of this over all x is shown there, (A 12), to be given by
4π#µΨ!

!
(0) (sum of first and higher reflections). The integral of the subtracted term

²C
!
(l )C

#
(l ) a#~ # ´[U

"
(xlσ®σ« ; l « ) rσ=! is (4πµ)−" times the total force due to the first

reflection, and hence

&
¢

−¢

²(4πµ)−" f
#
(x ; 0, l ;σ«, l « )®²C

!
(l )C

#
(l ) a#~ # ´[U

"
(xlσ®σ« ; l « ) rσ=!´dx

is given to the first approximation by πΨ"

!
(0), the sum of contributions to πΨ

!
(0) from

second and higher reflections. Hence

W
$
¯&

¢

!

P(σ«, l « r 0, l ) dh&
π

!

sin# θdθ&#
π

!

πΨ"

!
(0) dφ

¯ "

%
λ&

¢

#a

²12aδ(h®2a)´dh&
π

−π

sin# θdθ&#
π

!

Ψ"

!
(0) dφ

¯ cQ
"
(αa) ll[UcQ

#
(αa) (I–ll )[U, (5.12)

where Q
"
, Q

#
are defined at the end of Appendix B. Their calculation is explained, and

approximate values are given there.
Of these integrals, W

"
represents the effect of the ‘excluded volume’ around any

fibre, W
#
the re-normalizing term ®µα#U

"
(r« ; l ) that appears on the right-hand side of

equation (5.1), W
$

the contribution of the two-cylinder interactions to the drag (its
leading term, the second reflection, is in fact nearly cancelled out by W

#
), and W

S
the

higher-order contributions that are omitted at stage 2.
Note the effect in W

"
and W

$
of the accumulated probability at h¯ 2a. In the former,

(5.10), the effect is represented simply by the term 2αa in the bracket multiplying
exp(®2αa). As αaU 0, W

"
behaves like (logαa)−# when the accumulated probability

term is included, but like (αa)−" (logαa)−# when it is not. In W
$
, it can be seen from

(B 7) that the effect is expressed in the term 2S
k
added to R

k
which represents integrals

over h.

6. Self-consistency equation and stage 2 results for drag

Substitution of the stage 2 approximation

(4πµ)−" f(#)
"

(l )¯C$

!
(l )[UW

"
W

#
W

$
(6.1)
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into (5.6) leads to

c}(4π)& ²C$

!
(l )[UW

"
W

#
W

$
´dΩ(l )¯ "

%
α#a#U.

From this the self-consistency equation can be written

"

%
α#a#¯ cG(αa)c#H(αa) (6.2)

in terms of functions G, H such that

& ²C$

!
(l )[UW

#
´dΩ(l )¯ 4πG(αa)U,

& ²W
"
W
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´dΩ(l )¯ 4πcH(αa)U.

Equations (3.7)–(3.8) and (5.10)–(5.12) show that these notations are consistent and
that
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where as in §3,
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For longitudinal}transverse flow through arrays of parallel rods, the corresponding
functions are
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W
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Here

Q
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(αa)¯ 2a−#&

¢

#a

d
""

hdh, Q
t
(αa)¯ a−#&

¢

#a

(d
##

d
$$

) hdh,

where the d
ii

are drag coefficients, relating to the sum of second and higher reflections,
for a pair of parallel rods a distance h apart : d

""
for longitudinal flow, d

##
for transverse

flow at right angles to the plane of the two rods, d
$$

for transverse flow in the plane of
the rods.

From equation (6.2) the volume fraction c is found as a function of the parameter
αa. Equation (6.1), together with (5.10)–(5.12), provides the results for transverse and
longitudinal drag at the stage 2 approximation.

All these results for very long straight filaments, at both first and second
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F 3. Graphs of longitudinal drag coefficient against volume fraction of cylinders. p, arrays of
parallel rods; r, arrays of randomly oriented rods. Suffixes 1, 2 denote stage of approximation.
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F 4. Graphs of transverse drag coefficient against volume fraction of cylinders. p, arrays of
parallel rods; r, arrays of randomly oriented rods. Suffixes 1, 2 denote stage of approximation.

approximations, are shown in figures 2–4, converted so as to make c the independent
variable. Figure 2 gives the parameter αa as a function of c, figure 3 the longitudinal
drag, and figure 4 the transverse drag. In each case the results for arrays of parallel rods
are included for comparison. Clearly the graphs are extended far beyond the range of
applicability of the assumptions about sparse arrays. See the conclusion for comments
about the comparison between the first and second approximation.

7. Comparison with experimental results

Spielman & Goren (1968) compare their drag predictions for a bed of fibres,
randomly oriented at right angles to the direction of flow, with an empirical curve of
Davies (1952). In the middle range of fibre volume fraction, the agreement is good. At
lower values of the volume fraction the empirical curve appears to tend to a constant
value, instead of decreasing without limit as predicted theoretically : this is presumably
the effect of finite Reynolds number found by Kaneda (1986).

For volume fractions greater than 0.06, the empirical curve falls below the
theoretical one. At c¯ 0.1 the difference rises to 10% and at 0.2 to 25%. Calculations
that include the effect of anisotropy, as explained in §3, agree much better with the
empirical curve. (The correction for two-cylinder interactions becomes comparable to
the effect of anisotropy at volume fractions approaching 0.3.) Thus the claim made by
the authors that the effect of anisotropic resistance will be small is valid only for the
lower values of volume fraction.

Evans et al. (1994) present experimental work on polymer conformation during flow
through a fixed fibre bed, where the fibres are randomly placed in each of two
orthogonal directions normal to the flow. For volume fraction 0.0247 and fibres of
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diameter 0.0203 cm, they give an accurate drag measurement leading to a ‘pore size ’
(shielding length) of 0.0421 cm, as against their theoretical value of 0.0486 cm. It seems
likely that the difference is largely due to their approximating the modified Bessel
function by the logarithmic leading term. The exact method of Spielman & Goren
(1968) and of the present paper, for transverse flow through parallel arrays, gives a first
approximation pore size of 0.0403 cm. Allowance for the effect of anisotropy as
described in §3 raises this to 0.0410 cm. The second approximation has not been
worked out for this configuration, but an estimate by analogy with transverse flow
through parallel arrays suggests a drag reduction of about 4%, bringing the pore size
to 0.0418 cm.

Ghaddar (1995) employed a Monte Carlo approach to compute the transverse
permeability of random arrays of parallel fibres. His table III gives results that can be
directly compared with the parallel fibre theory. Ghaddar compares three of his data
points with the results given by Howells (1974). His remarks, on the stabilizing effect
of incorporating the averaged effect of a second cylinder, are supported by
consideration of figure 5. This shows upper and lower estimates of the parameter αa,
from his one-standard-deviation confidence limits for permeability, with the first and
second approximation curves from the present paper.

Experimental work on beds of fibres randomly orientated in three dimensions is
evidently more difficult, and so far data have not been found to compare with the
theory.
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8. Conclusions

The successive approximation approach to the problem of flow through a fixed bed,
developed from the averaged equation method with re-normalization, is based on quite
simple equations. First, there are equations (3.1) for the Brinkman effective medium,
together with an equation for self-consistency, such as (5.6). These lead to first
approximations that are good for c up to 0.05, and fair up to even 0.2. Factors such as
finite length and curvature can be allowed for by ordinary drag calculations for the
Brinkman medium.

Secondly, the re-normalized equation (5.1) leads to the stage 2 expression (6.1), with
W

"
, W

#
, W

$
given in (5.10), (5.11), (5.12). As pointed out, these three expressions have

clear physical meanings, though the drag calculation for the third involves some
extensive computation in the case of randomly oriented rods. The results to stage 2,
and comparison with experiments, give further confidence in the approach.

8.1. Formal order of magnitude of the error for asymptotically small �olume fraction

For the regime of asymptotically small c, it was pointed out in the introduction that
expansions for the drag coefficient in terms of c have not just negative powers of log 1}c
but also repeated logarithms, which is not a very useful kind of series.

The implicit formulation of Howells (1974) (see (1.1)) expresses log 1}c as a series
beginning with the first power of the divisor M (reciprocal of transverse drag
coefficient), then its logarithm plus a constant, and then all negative powers. Thus if
2M¯ log 1}c is taken as the basic approximation, the error is of order log log 1}c. It
is surely preferable to use the implicit equation 2M®logM2γ¯ logm}c (m is 1, 2,
'

&
,…, depending on the geometry of the fibre array) to define the first approximation.

Now the first term neglected in the expression for log 1}c is of order M−". At the second
approximation (two rods), the first term neglected is of order M−#, and so on.

8.2. Beha�iour of the approximation process at practical �alues of �olume fraction

Consider now a regime for which terms in c are significant. It turns out that the value
of M may be too small for expansions in negative powers of M to be useful. For the
two-rod calculations in §§5 and 6, the drag terms were evaluated numerically for a
range of values of αa corresponding to this regime. Then, with parallel arrays, for
transverse flow the change produced by the second-order theory is less than 4% up to
c¯ 0.2, and for longitudinal flow the change is less than 4% up to c¯ 0.075, and 8%
at 0.1. With random arrays, whether for transverse or longitudinal flow, the change is
less than 6% up to c¯ 0.03, and less than 10% up to c¯ 0.2.

Given the fair degree of closeness between first and second approximations up to
volume fractions of 0.2, it may be of interest to set out the behaviour of the present
theory at the highest values of c :

Parallel arrays, near to close packing. On physical grounds, transverse flow is blocked
at close packing, c¯ 0.907. Use of the asymptotic forms for the modified Bessel
functions leads to results from the present theory for the dependence of αa, when it is
large, on c : first-order theory αa¯ 1}(0.5®c) ; second-order αa¯ 2.673c}(0.604®c).
Longitudinal flow is not quite blocked at close packing, but αa should be around 60.
From first-order theory αa¯ 2}(1®c)E 21.5 at close packing; from second-order
theory αa 3c}(1®c)E 29.2 at close packing.

Random arrays, densely packed. At the closest packing c¯ 0.680, and from the first-
order theory αa¯ 1.2}(0.6®c). The calculation has not been carried out for the
second-order theory. In all these cases note that C

T
¯ 2C$

L
E "

#
α#a#αa.
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Appendix A: Fourier transforms of flow fields

Flows in the Brinkman’s medium can be expressed as Fourier transforms in
cylindrical polar coordinates (x,σ,φ) (with notation κα ¯ (κ#α#)"/#) :

(1®α−#~ #)u¯&
¢

−¢
3
¢

n=−¢

α−#Π
n
(κ)[(¡¡®I~ #) I

n
(rκrσ) eiκx+inφ dκ, (A 1)

α−#~ #u¯®&
¢

−¢
3
¢

n=−¢

α−#Ω
n
(κ)[(¡¡®I~ #) I

n
(κα σ) eiκx+inφ dκ. (A 2)

The velocity field u is clearly the sum of the two expressions (A 1) and (A 2). But it is
convenient to treat them separately: (A 1) is an irrotational flow driven by the pressure
field against Darcy resistance, and (A 2) is a rotational flow governed by viscous forces.

For the flow due to a shielded Stokeslet S at the point (x,σ,φ)¯ (0, h, 0), which is
given by the Green’s function (3.2), the Fourier transforms that appear above are

Π
n
(κ)¯SK

n
(rκr h), Ω

n
(κ)¯SK

n
(κα h). (A 3)

These expressions display the typical behaviours, as κU 0, ¢, of the Fourier
transforms that arise in this section.

A.1. Expansion in cylindrical coordinates of the flow due to an inclined cylinder

The notation is mostly as in §2, figure 1: the axes have directions l, l «, inclined at angle
θ, and the shortest distance between them is h. But now x, x« are measured along the
respective rod axes from O, O«, which are the ends of the common normal (see figure
6). Azimuthal angles φ, φ« are measured from n, n«.

A surface stress distribution P(x«,φ«), acting on the fluid over a cylinder of radius a
about the second axis, is expressed as a Fourier transform:

P(x«,φ« )¯µa−"&
¢

−¢
3
¢

n=−¢

Φ
n
(κ«) eiκ«x«+inφ« dκ«.

The resulting flow can be expanded in coordinates (x,σ,φ) about the first axis, using
the equations (A 1), (A 2) with

Π
j
(κ)¯ r2 sin θr−"&

¢

−¢
3
¢

n=−¢
0q®κ¨

κ 1j 0q®κ§
κ« 1n e−qh I

n
(rκ«r a)Φ

n
(κ«)

dκ«
q

,

Ω
j
(κ)¯ r2 sin θr−"&

¢

−¢
3
¢

n=−¢
0qα®κ¨

κα
1j 0qα®κ§

κ!α
1n e−qαh I

n
(κ!α a)Φ

n
(κ«)

dκ«
qα

,

5

6

7

8

(A 4)

and the notation

κ§¯ (κ®κ« cos θ)}sin θ, κα ¯ (κ#α#)"/#,

κ¨¯ (κ«®κ cos θ)}sin θ, κ!α ¯ (κ«#α#)"/#,

q¯ (κ#κ«#®2κκ« cos θ)"/#}rsin θr, qα ¯ (q#α#)"/#.

5

6

7

8

(A 5)
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F 6. Axes of symmetry for inclined cylinders.

Equations (A 4) yield Π
j
(κ), Ω

j
(κ) that behave similarly to the forms given in (A 3),

namely regular functions of real κ, except that as κU 0, Π
j
(κ) is O(κ−rj r ) for j1 0 and

O(log κ) for j¯ 0. They are exponentially small for large κ.
For parallel axes, θ¯ 0, and the transformation simplifies to

Π
j
(κ)¯ 3

¢

n=−¢

K
j−n

(rκr h) I
n
(κa)Φ

n
(κ),

Ω
j
(κ)¯ 3

¢

n=−¢

K
j−n

(κα h) I
n
(κα a)Φ

n
(κ).

A.2. Analogues of FaxeUn’s formulae

The next step is to find the surface force distribution on a rigid cylinder having its
axis in direction l through O, as a result of this externally produced flow, given by
(A 1)–(A 2), (A 4)–(A 5) and denoted u

e
(x,σ,φ).

Let the unknown surface force per unit area, acting on this cylinder from the fluid,
be written as a Fourier transform

Q(x,φ)¯µa−"&
¢

−¢
3
¢

n=−¢

Ψ
n
(κ) eiκx+inφ dκ. (A 6)

Then following the method of Howells (1974, p. 456), the fact that the cylinder is rigid
is expressed by the equations (as before κα ¯ (κ#α#)"/#)

3
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²K
n
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²K
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(κ)´[(¡¡®I~ #) I

n
(κα σ) eiκx+inφ ¯ 0,

which hold for all κ, and all points within the cylinder. After the differential operations
have been carried out, scalar components are taken, and Fourier components in the
angle φ. Then those equations are selected that involve the adjacent suffices j®1, j,
j1: six equations that reduce to three independent ones :

K
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and
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The consistent, unique solution for the Ψ
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(κ) can now be found in terms of the known

sequences Π
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(κ). Define the sequence of scalar functions
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where M
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(κ)¯K

j
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j
(κα a) ; (A 8)

then the Ψ
j
are given by
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#
(min)N

j+"
(κ)®"

#
(m®in)N

j−"
(κ)®lN

j
(κ) κ}κα. (A 9)

The resultant drag force on the circumference of the cylinder at x, per unit length along
the cylinder, is

f(x)¯ 2πµ&
¢

−¢

Ψ
!
(κ) eiκxdκ. (A 10)

And &
¢

−¢

f(x) dx¯ 4π#µΨ
!
(0), (A 11)

when it exists, is the total drag force on the whole cylinder.
Letting κ tend to zero in (A 7)–(A 9), and using (A 1), (A 2) to interpret the resulting

limits in terms of the externally produced velocity field, we find for the total drag (see
(3.5)–(3.7))

4π#µΨ
!
(0)¯&

¢

−¢

4πµ²C
!
(l )C

#
(l ) a#~ #´[u

e
(x, 0,φ) dx. (A 12)

In the case where the velocity field u
e
is independent of x,

write (1®α−#~ #)u
e
¯ 3

¢

k=−¢

V
k
(σ}a)rkr eikφ (l[V

k
¯ 0 for k1 0) (A 13)

and α−#~ #u
e
¯ 3

¢

k=−¢

W
k
I
k
(ασ) eikφ.

Then
K

!
(αa)Ψ

!
(κ)¯ (2l®ll )[²"

#
α#a#K

#
(αa)V

!
W

!
´ δ(κ)®"

#
α#a#K

!
(αa) ll[V

!
, (A 14)

K
"
(αa)Ψ³

"
(κ)¯y"

#
α#aK

"
(αa) (m³in) l[V

!
δ «(κ)

(m³in) (myin)[²"
%
α#a#K

$
(αa)V³

"
W³

"
´ δ(κ)

²ll"

#
(myin) (m³in)´[W³

"
δ(κ),

and for j" 1

K
j
(αa)Ψ³j

(κ)¯²ll(m³in) (myin)´[W³j
δ(κ)

®
α#a#

2j®2
K

j
(αa) (myin) (myin)[V³(j−#)

δ(κ)


a#a#

2j2
K

j+#
(αa) (m³in) (myin)[V³j

δ(κ).

With the use of (A 10), it can be seen that these last equations contain the results of
Howells (1974, §4), for the drag on an infinite cylinder in a flow independent of x,
subject to Brinkman’s equation. The derivative of the δ-function that occurs in Ψ³

"
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arises from the linear dependence of pressure on x when there is a uniform flow at
infinity.

Appendix B. Interaction between oblique cylinders

The drag force per unit area acting on the surface of rod 1 has Fourier transform
µa−"Ψ

j
(κ) (see (A 6)). Ψ

j
(κ) can be regarded as the sum of a series of reflections:

Ψ
j
(κ)¯Ψ(!)

j
(κ)Ψ(")

j
(κ)3

¢

r=#

Ψ(r)
j

(κ)

¯Ψ(!)
j

(κ)Ψ(")
j

(κ)Ψ"
j
(κ), (B 1)

where Ψ(!)
j

(κ) represents the forces arising from the main flow in the absence of a
second test rod, Ψ(")

j
(κ) the forces at rod 1 arising from the first reflection of the main

flow in rod 2, Ψ(#)
j

(κ) the forces arising from the second reflection – in rod 1 then in rod
2 – and so on. Ψ!

j
(κ) is the sum of the first- and higher-order reflections; Ψ"

j
(κ) is the

sum of the second- and higher-order reflections, and it is this latter that is required for
the second-stage calculation of mean drag.

As before, the two cylinders inclined at angle θ define orthonormal triads l, m, n and
l «, m«, n«. The axes have common normal OO« of length h in direction n¯®n«. Let O

!
,

the mid-point of the common normal as in figure 6, be the origin of the axes of
symmetry specified by the triad l

!
, m

!
, n. The first two of these are the respective

bisectors of the angles formed by l, l « and by m, ®m«. The velocity at infinity is to be
taken, in turn, along these three axes :

(A) U¯U
"
l
!
, (B) U¯U

#
m

!
, (C) U¯U

$
n

so that three basic solutions result, from which the general solution can be formed by
superposition.

Each of these basic solutions is to be expressed as a linear combination of l, m, n.
Thus the general solution can be written in terms of the dimensionless scalar functions
²∆

rs
(κ, j), r, s¯ 1, 2, 3´ of the real wavenumber κ and the integer wavenumber j :

Ψ
j
(κ)¯²∆

""
(κ, j) l∆

#"
(κ, j)m®i∆

$"
(κ, j)n´ l

!
[Ua

²∆
"#

(κ, j) l∆
##

(κ, j)m®i∆
$#

(κ, j)n´m
!
[Ua

²i∆
"$

(κ, j) li∆
#$

(κ, j)m∆
$$

(κ, j)n´n[Ua. (B 2)

Symmetry properties are expressed by the statements that the ∆
rs
(κ, j) are all real, and

that the above expression is replaced by its complex conjugate when the signs of κ and
j are both changed. (Note the first two members of the third row and the third column
are imaginary.)

The set of integral equations for Ψ
j
(κ) involves three sets of operators :

(i) The operator 3 first reverses the m
!
, n components of the main flow (uniform at

infinity), and then rotates the entire system through 180° about l
!
. This leaves the flow

field unchanged, but takes any point on one rod into the point with the same
coordinates on the other, interchanges the triads l, m, n and l «, m«, n«, and takes the
stress distribution over one rod into that over the other. Thus if Ψ¯²Ψ

j
(κ)´ represents

the Fourier transform of the stress distribution on the rod at l, m, n, then 3Ψ
represents the same for the rod at l «, m«, n«.

(ii) The operators 6, 7 are defined by (A 4)–(A 5); they give the ‘potentials ’ Π¯
²Π

j
(κ)´, Ω¯²Ω

j
(κ)´ for the flow at rod 1 as a result of stress Φ¯²Φ

n
(κ«)´¯®3Ψ

acting on the fluid at rod 2:

Π¯6Φ¯®63Ψ, Ω¯7Φ¯®73Ψ.
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(iii) The operator 4 is defined by (A 7)–(A 9); it gives the stress distribution over
rod 1 as a result of the above flow, denoted Ψ

refl.
to indicate that it is the reflection of

the stress distribution Ψ :

Ψ
refl.

¯4²Π,Ω´¯®4²63Ψ,73Ψ ´.

Then the set of integral equations for Ψ§¯²Ψ"
j
(κ)´, the contribution from second and

higher reflections to the stress on the rods in a uniform flow, is obtained by setting
Ψ

refl.
¯Ψ§, Ψ¯Ψ «¯Ψ§Ψ (") :

Ψ§¯®4²63Ψ§,73Ψ§´®4²63Ψ("),73Ψ (")´, (B 3)

where Ψ (")¯®4²63Ψ (!),73Ψ (!)´,

and Ψ (!) represents the stress on rod 1 due to the main flow.
In a uniform main flow U, see (A 13)–(A 14)

Ψ(!)

!
(κ)¯ 2²C

L
llC

T
(I®ll )´[Uδ(κ),

Ψ(!)³
"
(κ)¯®"

#
α#a(³min) l[Uδ«(κ),

Ψ(!)³
#
(κ)¯®"

#
α#a#(³m®in) (³m®in)[Uδ(κ).

5

6

7

8

(B 4)

For numerical computation, the general stress distribution Ψ§ corresponding to
second and higher reflections is expressed as in (B 2) in terms of the scalar components
∆"

rs
(κ, j). The following set of equations, for s¯ 1, 2, 3, relate the ∆"

rs
(κ, j) to ∆!

rs
(κ, j)¯

∆"
rs
(κ, j)∆(")

rs
(κ, j). They are to be solved for the ∆"

rs
(κ, j), given the first reflection ∆(")

rs
(κ,

j) :
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F
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(B 5)
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(B 6)

where F
jn

(κ, κ« ;α)¯ 0qα®κ¨
κα

1j 0qα®κ§
κ!α

1n I
n
(κ!α a) q−"

α e−qαh,

F
jn
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rκr 1
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s
¯ 1 for s¯ 1, ε

s
¯®1 for s¯ 2, 3,

and see (A 5).
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αa 1}8 1}2 2

&
π/#

!

R
"
dθ 2.035 0.335 0.031

&
π/#

!

2S
"
dθ 1.184 0.745 0.334

Q
"

3.219 1.080 0.365

&
π/#

!

R
#
dθ 5.818 2.163 1.621

&
π/#

!

2S
#
dθ 1.444 1.460 3.230

Q
#

7.262 3.623 4.851
(Q

"
2Q

#
)}3 5.914 2.775 3.356

T 3. Results of calculation for oblique rod interaction

These are solved by iteration. When h, the separation of the rods, is large enough
only a few iterations are needed, and only one or two orders of Fourier components
around the rods. But as h approaches its lower bound 2a, a greater number of the
azimuthal Fourier components are needed, and more iterations. Then convergence is
accelerated by use of the technique of under-relaxation, as shown by the scheme

y
n+"

¯ rF(y
n
)(1®r) y

n
,

where F is the operator for iteration, y
n

the nth iteration, and r is the relaxation
coefficient. Ordinary iteration is given by r¯ 1, under-relation by r! 1.

Calculations were performed at the values αa¯ "

)
, "

#
, 2, for θ¯ "

'
π, "

$
π, "

#
π, and for a

sufficient set of values of η¯ h}a& 2 to permit an approximate evaluation of the
integrals of Ψ"

!
(0) that are needed for the second-stage drag calculation set out in §5.

The integral over φ, the azimuthal angle about l of the common normal to the two
rods, can be written down as follows:

where

sin# θ&#
π

!

Ψ"

!
(0) dφ¯πaU[²S

"
(η, θ,αa) llS

#
(η, θ,αa) (I®ll )´,
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(B 7)

and D
rs
(η, θ)¯∆"

rs
( j¯ 0, κ¯ 0) as a function of η¯ h}a, θ, in terms of the solutions

to (B 5).
Further write

R
k
(θ,αa)¯&

¢

#

S
k
(η, θ,αa) dη,

and then

Q
k
(αa)¯&

π/#

!

²R
k
(θ,αa)2S

k
(2, θ,αa)´dθ, k¯ 1, 2,

are the quantities that appear in the drag evaluation in §5. See table 3.
Limiting cases :
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(i) αa large. The limiting case is that of simple Darcy law flow past two inclined
cylinders. The pressure force from second and higher reflections will be of order
µα#Ua'h−$ (shearing force will be of order µαUa&h−$). Orders of magnitude of both R

#
and S

#
are α#a#.

(ii) αa small. Orders of magnitude of R
#
, S

#
are (αa)−#²K

!
(αa)´−$, (αa)−"²K

!
(αa)´−$.

(iii) θ small. In terms of the corresponding drag coefficients d
""

, d
##

, d
$$

on pairs of
parallel rods, a distance r apart,

sin θD
jk
(h}a, θ)U δ

jk&
¢

h

2d
kk

(r}a)
rdr

(r#®h#)"/#
.
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